Saturday 9 June 2012

Functional categories


Computer programs may be categorized along functional lines. The main functional categories are system software and application software. System software includes the operating system which couples computer hardware with application software.[12] The purpose of the operating system is to provide an environment in which application software executes in a convenient and efficient manner.[12] In addition to the operating system, system software includes utility programs that help manage and tune the computer. If a computer program is not system software then it is application software. Application software includes middleware, which couples the system software with the user interface. Application software also includes utility programs that help users solve application problems, like the need for sorting.
Sometimes development environments for software development are seen as a functional category on its own, especially in the context of human-computer interaction and programming language design. Development environments gather system software (such as compilers and system's batch processing scripting languages) and application software (such as IDEs) for the specific purpose of helping programmers create new programs.

Programming

Computer programming is the iterative process of writing or editing source code. Editing source code involves testing, analyzing, and refining, and sometimes coordinating with other programmers on a jointly developed program. A person who practices this skill is referred to as a computer programmer, software developer or coder. The sometimes lengthy process of computer programming is usually referred to as software development. The term software engineering is becoming popular as the process is seen as an engineering discipline.

Computer program


A computer program (also software, or just a program) is a sequence of instructions written to perform a specified task with a computer.[1] A computer requires programs to function, typically executing the program's instructions in a central processor.[2] The program has an executable form that the computer can use directly to execute the instructions. The same program in its human-readable source code form, from which executable programs are derived (e.g., compiled), enables a programmer to study and develop its algorithms.
Computer source code is often written by computer programmers. Source code is written in a programming language that usually follows one of two main paradigms: imperative or declarative programming. Source code may be converted into an executable file (sometimes called an executable program or a binary) by a compiler and later executed by a central processing unit. Alternatively, computer programs may be executed with the aid of an interpreter, or may be embedded directly into hardware.
Computer programs may be categorized along functional lines: system software and application software. Two or more computer programs may run simultaneously on one computer, a process known as multitasking.

Friday 8 June 2012

Design and implementation


Design and implementation of software varies depending on the complexity of the software. For instance, design and creation of Microsoft Word software will take much more time than designing and developing Microsoft Notepad because of the difference in functionalities in each one.
Software is usually designed and created (coded/written/programmed) in integrated development environments (IDE) like Eclipse, Emacs and Microsoft Visual Studio that can simplify the process and compile the program. As noted in different section, software is usually created on top of existing software and the application programming interface (API) that the underlying software provides like GTK+, JavaBeans or Swing. Libraries (APIs) are categorized for different purposes. For instance, JavaBeans library is used for designing enterprise applications, Windows Forms library is used for designing graphical user interface (GUI) applications like Microsoft Word, and Windows Communication Foundation is used for designing web services. Underlying computer programming concepts like quicksort, hashtable, array, and binary tree can be useful to creating software. When a program is designed, it relies on the API. For instance, if a user is designing a Microsoft Windows desktop application, he/she might use the .NET Windows Forms library to design the desktop application and call its APIs like Form1.Close() and Form1.Show()[8] to close or open the application and write the additional operations him/herself that it need to have. Without these APIs, the programmer needs to write these APIs him/herself. Companies like Sun Microsystems, Novell, and Microsoft provide their own APIs so that many applications are written using their software libraries that usually have numerous APIs in them.
Computer software has special economic characteristics that make its design, creation, and distribution different from most other economic goods.[specify][9][10]
A person who creates software is called a programmer, software engineer, software developer, or code monkey, terms that all have a similar meaning.

License

The software's license gives the user the right to use the software in the licensed environment. Some software comes with the license when purchased off the shelf, or an OEM license when bundled with hardware. Other software comes with a free software license, granting the recipient the rights to modify and redistribute the software. Software can also be in the form of freeware or shareware.

Architecture


Users often see things differently than programmers. People who use modern general purpose computers (as opposed to embedded systems, analog computers and supercomputers) usually see three layers of software performing a variety of tasks: platform, application, and user software.
Platform software: Platform includes the firmware, device drivers, an operating system, and typically a graphical user interface which, in total, allow a user to interact with the computer and its peripherals (associated equipment). Platform software often comes bundled with the computer. On a PC you will usually have the ability to change the platform software.
Application software: Application software or Applications are what most people think of when they think of software. Typical examples include office suites and video games. Application software is often purchased separately from computer hardware. Sometimes applications are bundled with the computer, but that does not change the fact that they run as independent applications. Applications are usually independent programs from the operating system, though they are often tailored for specific platforms. Most users think of compilers, databases, and other "system software" as applications.
User-written software: End-user development tailors systems to meet users' specific needs. User software include spreadsheet templates and word processor templates. Even email filters are a kind of user software. Users create this software themselves and often overlook how important it is. Depending on how competently the user-written software has been integrated into default application packages, many users may not be aware of the distinction between the original packages, and what has been added by co-workers.

Application software


Application software is developed to perform in any task that benefits from computation. It is a set of programs that allows the computer to perform a specific data processing job for the user. It is a broad category, and encompasses software of many kinds, including the internet browser being used to display this page. This category includes:
Business software
Computer-aided design
Databases
Decision-making software
Educational software
Image editing
Industrial automation
Mathematical software
Medical software
Molecular modeling software
Quantum chemistry and solid state physics software
Simulation software
Spreadsheets
Telecommunications (i.e., the Internet and everything that flows on it)
Video editing software
Video games
Word processing

System software


System software is computer software designed to operate the computer hardware to provide basic functionality and to provide a platform for running application software.[6][7] System software includes device drivers, operating systems, servers, utilities, and window systems.
System software is responsible for managing a variety of independent hardware components, so that they can work together harmoniously. Its purpose is to unburden the application software programmer from the often complex details of the particular computer being used, including such accessories as communications devices, printers, device readers, displays and keyboards, and also to partition the computer's resources such as memory and processor time in a safe and stable manner.

Types of software


Software includes all the various forms and roles that digitally stored data may have and play in a computer (or similar system), regardless of whether the data is used as code for a CPU, or other interpreter, or whether it represents other kinds of information. Software thus encompasses a wide array of products that may be developed using different techniques such as ordinary programming languages, scripting languages, microcode, or an FPGA configuration.
The types of software include web pages developed in languages and frameworks like HTML, PHP, Perl, JSP, ASP.NET, XML, and desktop applications like OpenOffice.org, Microsoft Word developed in languages like C, C++, Objective-C, Java, C#, or Smalltalk. Application software usually runs on an underlying software operating systems such as Linux or Microsoft Windows. Software (or firmware) is also used in video games and for the configurable parts of the logic systems of automobiles, televisions, and other consumer electronics.
Practical computer systems divide software systems into three major classes[citation needed]: system software, programming software and application software, although the distinction is arbitrary, and often blurred.

The first theory about software was proposed by Alan Turing in his 1935 essay Computable numbers with an application to the Entscheidungsproblem (Decision problem).[3] The term "software" was first used in print by John W. Tukey in 1958.[4] Colloquially, the term is often used to mean application software. In computer science and software engineering, software is all information processed by computer system, programs and data.[4] The academic fields studying software are computer science and software engineering.
The history of computer software is most often traced back to the first software bug in 1946[citation needed]. As more and more programs enter the realm of firmware, and the hardware itself becomes smaller, cheaper and faster as predicted by Moore's law, elements of computing first considered to be software, join the ranks of hardware. Most hardware companies today have more software programmers on the payroll than hardware designers[citation needed], since software tools have automated many tasks of Printed circuit board engineers. Just like the Auto industry, the Software industry has grown from a few visionaries operating out of their garage with prototypes. Steve Jobs and Bill Gates were the Henry Ford and Louis Chevrolet of their times[citation needed], who capitalized on ideas already commonly known before they started in the business. In the case of Software development, this moment is generally agreed to be the publication in the 1980s of the specifications for the IBM Personal Computer published by IBM employee Philip Don Estridge. Today his move would be seen as a type of crowd-sourcing.
Until that time, software was bundled with the hardware by Original equipment manufacturers (OEMs) such as Data General, Digital Equipment and IBM[citation needed]. When a customer bought a minicomputer, at that time the smallest computer on the market, the computer did not come with Pre-installed software, but needed to be installed by engineers employed by the OEM. Computer hardware companies not only bundled their software, they also placed demands on the location of the hardware in a refrigerated space called a computer room. Most companies had their software on the books for 0 dollars, unable to claim it as an asset (this is similar to financing of popular music in those days). When Data General introduced the Data General Nova, a company called Digidyne wanted to use its RDOS operating system on its own hardware clone. Data General refused to license their software (which was hard to do, since it was on the books as a free asset), and claimed their "bundling rights". The Supreme Court set a precedent called Digidyne v. Data General in 1985. The Supreme Court let a 9th circuit decision stand, and Data General was eventually forced into licensing the Operating System software because it was ruled that restricting the license to only DG hardware was an illegal tying arrangement.[5] Soon after, IBM 'published' its DOS source for free,[citation needed] and Microsoft was born. Unable to sustain the loss from lawyer's fees, Data General ended up being taken over by EMC Corporation. The Supreme Court decision made it possible to value software, and also purchase Software patents. The move by IBM was almost a protest at the time. Few in the industry believed that anyone would profit from it other than IBM (through free publicity). Microsoft and Apple were able to thus cash in on 'soft' products. It is hard to imagine today that people once felt that software was worthless without a machine. There are many successful companies today that sell only software products, though there are still many common software licensing problems due to the complexity of designs and poor documentation, leading to patent trolls.
With open software specifications and the possibility of software licensing, new opportunities arose for software tools that then became the de facto standard, such as DOS for operating systems, but also various proprietary word processing and spreadsheet programs. In a similar growth pattern, proprietary development methods became standard Software development methodology.